

Voronoi diagrams

Notation: $d(p,q) = \|p-q\|$: distance between 2 points

 \bar{R} = closure of the region \underline{R}

Bisector: Let p,q be points, $B(p,q)=\{x|d(x,p)=d(x,q)\},$ the locus of points equidistant from p and q

Voronoi diagra,

We will define:

$$egin{aligned} H(p,q) &= \{x | d(x,p) < d(x,q) \} \ H(q,p) &= \{x | d(x,p) > d(x,q) \} \end{aligned}$$

given a set S of points , let $p\in S,$ the ${\bf voronoi}\ {\bf region}$ of p is the interception of convex halfspaces

$$R(p) = igcap_{p_i \in S \setminus p} H(p_i,p)$$

We define the voronoi diagram of ${\cal S}$

$$V(s) = igcup_{p,q\in S, p
eq s} ar{R}(p) \cap ar{R}(q)$$

Properties

 $orall p \in S, R(p)$ is convex $orall p, q \in S, p
eq q, R(p) \cap R(q) = \emptyset$ $\overline{R}(p) \cap \overline{R}(q) \subseteq \overline{H}(p,q) \cap \overline{H}(q,p) = B(p,q)$ At most one contiguous piece of B(p,q) is part of $\overline{R}(p)$ R(p) is the set of all the points closer to p than any other points in S

Theorem of the expanding Sphere

Let S be a set of points, let $x \in S$. Consider a sphere(circle in 2D) around x and consider it expanding.

At some point C(x) will touch a one or more points in S

Cases:

- exactly one point $p\in S: x\in R(p)$
- exactly two point $p,q\in S:x\in ext{ region between }R(p),R(q)$
- Three or more points $p_1,\ldots,p_k\in S, x=$ voronoi node between $R(p_1),\ldots,R(p_k)$

Proof

//Todo

Lemma

A point x s on a **voronoi edge** $\iff \exists C(x)$ that touches exactly 2 points in S and contains no other points from S

A point x s on a **voronoi node** $\iff \exists C(x)$ that touches three or more points in S and contains no other points from S

Global properties

Lemma: There is a connection between V(S) and CH(S): R(p) is unbounded $\iff p$ is on the border of CH(S)

Proof: R(p) is unbounded, let *e*=unbounded edge of R(n), *q*= site s.t. $E \subseteq B(p,q)$. Consider C(x) through p, q and x on e.

Let $\alpha \to \infty$ \Rightarrow segment of C(x) between p,q approaches $p\bar{q}$ but C(x) never contains any other $r \in S \Leftarrow$ is neighbor of $q \Rightarrow \exists C(x)$ through p,q containing no other $r \in S$, so we can expand C(x)

Note: this proof is valid only in general positions(depending on the context), in this case ni three points are on CH(S) are on the same straight line

Complexity

a voronoi over n points in the plane has O(n) nodes, edges and regions

Proof:

Pruning infinite edges from a voronoi by a circle that is *big enough* to contain all the points, replacing this circle segments by straight lines. Consider the voronoi diagram plus the new edges as a polyedron developed into the plane, evert R(p) corresponds to one face, infinite regions correspond to the last face

Euler's equation applies to voronoi, so the complexity claims can be transferred.

Lemma: the construction of V(s) in the plane takes $\Omega(n \log n)$

Proof: reduce the problem of constructing a CH to a voronoi, so we can derive the CH from the voronoi in time O(n)