

Notation: $d(p, q)=\|p-q\|$: distance between 2 points
$\bar{R}=$ closure of the region \underline{R}
Bisector: Let p, q be points, $B(p, q)=\{x \mid d(x, p)=d(x, q)\}$, the locus of points equidistant from p and q

Voronoi diagra,

We will define:
$H(p, q)=\{x \mid d(x, p)<d(x, q)\}$
$H(q, p)=\{x \mid d(x, p)>d(x, q)\}$
given a set S of points, let $p \in S$, the voronoi region of p is the interception of convex halfspaces
$R(p)=\bigcap_{p_{i} \in S \backslash p} H\left(p_{i}, p\right)$
We define the voronoi diagram of S

$$
V(s)=\bigcup_{p, q \in S, p \neq s} \bar{R}(p) \cap \bar{R}(q)
$$

Properties

$\forall p \in S, R(p)$ is convex
$\forall p, q \in S, p \neq q, R(p) \cap R(q)=\emptyset$
$\bar{R}(p) \cap \bar{R}(q) \subseteq \bar{H}(p, q) \cap \bar{H}(q, p)=B(p, q)$
At most one contiguous piece of $B(p, q)$ is part of $\bar{R}(p)$
$R(p)$ is the set of all the points closer to p than any other points in S

Theorem of the expanding Sphere

Let S be a set of points, let $x \in S$. Consider a sphere(circle in 2D) around x and consider it expanding.

At some point $C(x)$ will touch a one or more points in S

Cases:

- exactly one point $p \in S: x \in R(p)$
- exactly two point $p, q \in S: x \in$ region between $R(p), R(q)$
- Three or more points $p_{1}, \ldots, p_{k} \in S, x=$ voronoi node between $R\left(p_{1}\right), \ldots, R\left(p_{k}\right)$

Proof

//Todo

Lemma

A point x s on a voronoi edge $\Longleftrightarrow \exists C(x)$ that touches exactly 2 points in S and contains no other points from S

A point x s on a voronoi node $\Longleftrightarrow \exists C(x)$ that touches three or more points in S and contains no other points from S

Global properties

Lemma: There is a connection between $V(S)$ and $C H(S)$: $R(p)$ is unbounded \Longleftrightarrow p is on the border of $C H(S)$
Proof: $R(p)$ is unbounded, let $e=$ unbounded edge of $R(n)$, $q=$ site s.t. $E \subseteq B(p, q)$. Consider $C(x)$ through p, q and x on e.
Let $\alpha \rightarrow \infty \Rightarrow$ segment of $C(x)$ between p, q approaches $\overline{p q}$ but $C(x)$ never contains any other $r \in S \Leftarrow$ is neighbor of $q \Rightarrow \exists C(x)$ through p, q containing no other $r \in S$, so we can expand $C(x)$
Note: this proof is valid only in general positions(depending on the context), in this case ni three points are on $C H(S)$ are on the same straight line

Complexity

a voronoi over n points in the plane has $O(n)$ nodes, edges and regions

Proof:

Pruning infinite edges from a voronoi by a circle that is big enough to contain all the points, replacing this circle segments by straight lines. Consider the voronoi diagram plus the new edges as a polyedron developed into the plane, evert $R(p)$ corresponds to one face, infinite regions correspond to the last face

Euler's equation applies to voronoi, so the complexity claims can be transferred.
Lemma:the construction of $V(s)$ in the plane takes $\Omega(n \log n)$
Proof: reduce the problem of constructing a CH to a voronoi, so we can derive the CH from the voronoi in time $O(n)$

